
A Practical Attack on the MIFARE Classic

Gerhard de Koning Gans, Jaap-Henk Hoepman, and Flavio D. Garcia

Institute for Computing and Information Sciences
Radboud University Nijmegen

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
g.t.dekoninggans@student.ru.nl,

jhh@cs.ru.nl,
flaviog@cs.ru.nl

Abstract. The mifare Classic is the most widely used contactless smart
card in the market. Its design and implementation details are kept secret
by its manufacturer. This paper studies the architecture of the card and the
communication protocol between card and reader. It reveals command codes
and structure that so far were unknown. It also gives a practical, low-cost
attack that recovers secret information from the memory of the card. Due
to a weakness in the pseudo-random generator we are able to recover the
keystream generated by the CRYPTO1 stream cipher. Finally, we exploit the
malleability of the stream cipher to read all memory blocks of the first sector
of the card. Moreover, we are able to read any sector of the memory of the
card, provided that we know one memory block within this sector.

1 Introduction

RFID and contactless smart cards have become pervasive technologies nowadays.
Over the last few years, more and more systems adopted this technology as replace-
ment for barcodes, magnetic stripe cards and paper tickets for a variety of appli-
cations. Contact-less cards consist of a small piece of memory that can be accessed
wirelessly, but unlike RFID tags, they also have some computing capabilities. Most of
these cards implement some sort of simple symmetric-key cryptography, which makes
them suitable for applications that require access control.

A number of high profile applications make use of contactless smart cards for
access control. For example, they are used for payment in several public transport
systems like the Octopus card1 in Hong Kong, the Oyster card2 in London, and
the OV-Chipkaart3 in The Netherlands, among others. Many countries have already
incorporated a contactless card in their electronic passports [2] and several car man-
ufacturers have it embedded in their car keys as an anti-theft method. Many office
buildings and even secured facilities like airports and military bases, use contactless
smart cards for access control.

1 http://www.octopuscards.com/
2 http://oyster.tfl.gov.uk
3 http://www.ov-chipkaart.nl/

http://www.octopuscards.com/
http://oyster.tfl.gov.uk
http://www.ov-chipkaart.nl/

On the one hand, the wireless interface has practical advantages: without me-
chanical components between readers and cards, the system has lower maintenance
costs, is more reliable, and has shorter reading times, providing higher throughput.
On the other hand, it represents a potential threat to privacy [2] and it is susceptible
to relay, replay and skimming attacks that were not possible before.

There is a huge variety of cards on the market. They differ in size, casing, memory
and computing power. They also differ in the security features they provide. A well
known and widely used system is mifare. mifare is a product family from NXP semi-
conductors (formerly Philips). According to NXP there are about 200 million mifare

cards in use around the world, covering 85% of the contactless smartcard market. The
mifare family contains four different types of cards: Ultralight, Standard, DESFire
and SmartMX. The mifare Classic cards come in three different memory sizes: 320B,
1KB and 4KB. The mifare Classic is the most widely used contactless card in the
market. Throughout this paper we focus on this card. mifare Classic cards provides
mutual authentication and data secrecy by means of the so called CRYPTO1 stream
cipher. This cipher is proprietary of NXP and its design is kept secret.

Nohl and Plötz [5] have recently reverse engineered the hardware of the chip
and exposed several weaknesses. Among them, due to a weakness on the pseudo-
random generator is the observation that the 32-bit nonces used for authentication
have only 16 bits of entropy. They also noticed that the pseudo-random generator
is stateless. They claim to have knowledge of the exact encryption algorithm which
would facilitate an off-line brute force attack on the 48-bit keys. Such an attack
would be feasible, in a reasonable amount of time, especially if dedicated hardware
is available.

Our Contribution We used a Proxmark III4 to analyze mifare cards and mount
an attack. To do so, we have implemented the ISO 14443-A functionality on the
Proxmark, since only ISO 14443-B was implemented at that time. We programmed
both processing and generation of reader-to-tag and tag-to-reader communication at
physical and higher levels of the protocol. The source code of the firmware is available
in the public domain5. Concurrently and independently from Nohl and Plötz results,
we also noticed a weakness in the pseudo-random generator. Our contribution is
threefold: First and foremost, using the weakness of the pseudo-random generator,
and given access to a particular mifare card, we are able to recover the keystream
generated by the CRYPTO1 stream cipher, without knowing the encryption key.
Secondly, we reveal the exact details of the communication between reader and card,
including command codes and structure that so far were unknown. Finally, we exploit
the malleability of the stream cipher to read all memory blocks of the first sector
(sector zero) of the card (without having access to the secret key). In general, we
are able to read any sector of the memory of the card, provided that we know one

memory block within this sector. After eavesdropping a transaction, we are always
able to read the first 6 bytes of every block in that sector, and in most cases also de
last 6 bytes. This leaves only 4 unrevealed bytes in those blocks.

4 http://cq.cx/proxmark3.pl
5 www.sos.cs.ru.nl/research/mifare

http://cq.cx/proxmark3.pl
www.sos.cs.ru.nl/research/mifare

Consequences of our attack Any system using mifare Classic cards that relies
on information stored on sector zero is now insecure. Our attack recovers, in a few
minutes, all secret information in that sector. This is also true for most of the data
in the remaining sectors, depending on the specific scenario. Besides, it complements
Nohl and Plötz results providing the necessary plaintext for a brute force attack on
the keys. This is currently work in progress.

Recommendations for improvement Our recommendations for short term im-
provement are not storing any sensible information in sector zero, such as authenti-
cation keys or any private information. Another sensible measure is to use multiple
sector authentications, to thwart replay attacks.

As long term improvement we suggest to migrate to more advanced cards such as
DESFire or better, to an open design architecture. Security by obscurity has shown
several times to be insecure in the long term [4].

Outline of this paper Section 2 describes the architecture of the mifare cards
and the communication protocol. In Section 5 exposes weaknesses in the design of
the cards. In Section 3 we describe the hardware used to mount the attacks which
are described in Section 6. Finally in Section 7 we give some concluding remarks and
detailed suggestions for improvement.

2 MIFARE Classic

Contactless smartcards are used in many applications nowadays. Contactless cards
are based on radio frequency identification technology (RFID) [1]. In 1995 NXP,
Philips at that time, introduced mifare

6. Some target applications of mifare are
public transportation, access control and event ticketing. The mifare Classic [6] card
is a member of the mifare product family and is compliant with ISO 14443-A up to
part 3. Part 4 defines the high-level protocol and the implementation of NXP differs
from the standard. Section 2.1 will discuss the different parts.

2.1 Communication Layer

The communication layer of the mifare Classic card is based on the ISO 14443
standard [3]. This ISO standard defines the communication for identification cards,
contactless integrated circuit(s) cards and proximity cards. The standard consists of
four parts.

Part 1 Physical characteristics

Part 2 Radio frequency interface power and signal interface

Part 3 Initialization and anticollision

Part 4 Transmission protocol

6 http://www.nxp.com

http://www.nxp.com

Part 1 describes the physical characteristics and circumstances under which the card
should be able to operate.
Part 2 defines the communication between the reader and card and vice versa. The
data can be encoded and modulated in two ways, type A and type B. mifare Classic
uses type A which defines Amplitude Shift Keying (ASK) for reader to card communi-
cation. To encode data bits the reader stops to generate a carrier for about 2µs with
certain intervals. This corresponds with 100% ASK because there is no amplitude
at all in this period. The card to reader communication for type A is done by load
modulation. The card will add a subcarrier or not, On-off Keying (OOK), to encode
data bits. For more detailed information about the communication on RFID we refer
to the “RFID Handbook” by Klaus Finkenzeller [1].
Part 3 describes the initialization and anticollision protocol. The anticollision is
needed to select a particular card when more cards are present within the read-
ing range of the reader. After a successful initialization and anticollision the card is
in an active state and ready to receive a command. This state is the starting point
for part 4 of the standard and also the point where mifare Classic differs from the
ISO standard.
The mifare Classic data sheets [6] do not mention any commands that could be send
on this level nor does it specify answers from the card or the length of the messages.
The data sheets does define though the structure of the memory of the card and how
to organize it, which is explained in Section 2.2. The modulation of commands is
done by the mifare Classic reader chip. Knowledge about the actual modulation is
therefore not needed.

2.2 Logical Structure

A mifare Classic card is in principle a memory card with few extra functionalities.
The memory is divided in data blocks of 16 bytes. Those data blocks are grouped into
sectors. The mifare Classic 1k card has 16 sectors of 4 data blocks each. The first
32 sectors of a mifare Classic 4k card consists of 4 data blocks and the remaining
8 sectors consist of 16 data blocks. Every last data block of a sector is called sector

trailer. A schematic of the memory of a mifare Classic 4k card is shown in Figure 1.

Note that block 0 of sector 0 contains special data. The first 4 data bytes contain
the unique identifier of the card (UID) followed by its 1-byte bit count check (BCC).
The bit count check is calculated by successively XOR-ing the separate UID bytes.
The remaining bytes are used to store manufacturer data. This data block is set and
immediately locked by the manufacturer so its contents cannot longer be modified.
The reader needs to authenticate for a sector before any memory operations are
allowed. The sector trailer contains the secret keys A and B which are used for
authentication. The access conditions define which operations are available for this
sector. Depending on which key is used for authentication and the access conditions
for this key, different restrictions apply to the memory operations.
The sector trailer has special access conditions. Key A cannot be read by a reader.
In some configurations key B is readable. In that case the memory is just used for
data storage and key B cannot be used as a key for authentication. Besides the access

Fig. 1: mifare Classic 4k Memory

conditions (AC) and keys, there is one data byte (U) remaining which has no defined
purpose. A schematic of the sector trailer is shown in Figure 2a. A data block is used
to store arbitrary data or can be configured as a value block. When used as a value
block a signed 4-byte value is stored twice non-inverted and once inverted. Inverted
here means that every bit of the value is XOR-ed with 1. This 4 bytes are stored from
the least significant byte on the left to the most significant byte on the right.

(a) Sector Trailer (b) Value Block

Fig. 2: Block contents

The 4 bytes left are used to store a 1-byte block address and can be useful for
back-up management, for instance to restore data blocks to a specific address on
the card. The address is stored twice non-inverted and twice inverted. Besides this
specific format the access conditions should be configured such that the specific value
block commands are allowed for this block. The write command should be used to
format a block as a value block.

2.3 Commands

The command set of mifare Classic is small. Most commands are related to a data
block and require the reader to be authenticated for its containing sector. The access

conditions are checked every time a command is executed to determine whether it is
allowed or not. A block of data might be configured to be read only. Another example
of a restriction might be a value block which can only be decremented.

Read and Write The read and write commands read or write one data block. This
is either a data block or a value block. The write command can be used to format a
data block as value block or just store arbitrary data.

Decrement, Increment, Restore and Transfer These commands are only al-
lowed on data blocks that are formatted as value blocks. The increment and decre-
ment commands will increment or decrement a value block with a given value and
place the result in a memory register. The restore command loads a value into the
memory register without any change. Finally the memory register is transferred in
the same block or transferred to another block by the transfer command.

2.4 Security Features

The mifare Classic card has some built-in security features. The communication is
encrypted by the proprietary stream cipher CRYPTO1.

Keys The 48-bit keys used for authentication are stored in the sector trailer of each
sector (see section 2.2). mifare Classic uses symmetric keys.

-

[1] Auth

�

[2] NC

-

[3] E(NR, NC)

�

[4] E(NR)

-

[5] Command

�

[6] Response

Reader Card

Fig. 3: Authentication followed by a command

Authentication Protocol mifare Classic makes use of a mutual three pass au-
thentication protocol that seems to be based on the ISO 9798-2. The authentication
scheme is shown in Figure 3. After this mutual authentication both, card and reader,
are convinced that they share the same key. The authentication procedure starts af-
ter a successful anticollision when the card is in an active state. The reader sends a

request for sector authentication and the card will respond with a 32-bit nonce NC .
Then, the reader sends back an encryption of the nonce NC of the card together with
its own nonce NR and some additional input in an 8-byte response. This answer is
the first encrypted message after the start of the authentication procedure. From this
point on no messages are send in the clear anymore. The card decrypts the response
(#3) and checks if it contains its own nonce NC and therefore knows whether or not
the reader possesses the same key. To show the reader that the card also knows the
key, an encryption of NR is send back (#4). The reader decrypts this response and
checks for its own nonce NC . The data sheets [6] do not give any information on the
way these authentication messages are build. It is our believe, based on our experi-
ments, that the above description is not far from the actual authentication protocol.
As far as our attack is concerned this description captures all the necessary concepts.

3 Hardware and Software

An RFID system consists of a transponder (card) and a reader [1]. The reader contains
a radio frequency module, a control unit and a coupling element to the card. The card
contains a coupling element and a microchip. The control unit of a mifare Classic
enabled reader is typically a mifare microchip with a closed design. This microchip
communicates with the application software and executes commands from it. Note
that the actual modulation of commands is done by this microchip and not by the
application software. The design of the microchip of the card is closed and so is the
communication protocol between card and reader.

Fig. 4: The Proxmark III

We want to evaluate the security properties of
the mifare system. Therefore we need hardware to
eavesdrop a transaction. It should also be possible
to act like a mifare reader to communicate with
the card. The Proxmark III developed by Jonathan
Westhues has these possibilities7. Because of its flex-
ible design, it is possible to adjust the Digital Signal
Processing to support a specific protocol. This device
supports both low frequency (125kHz-134kHz) and
high frequency (13.56mHz) signal processing. The
signal from the antenna is routed through a Field
Programmable Gate Array (FPGA). This FPGA re-
lays the signal to the microcontroller and can be used
to perform some filtering operations before relaying.
The software implementation allows the Proxmark
to eavesdrop communication between an RFID tag and a reader, emulate a tag and
a reader. In this case our tag will be the mifare Classic card. Despite the basic
hardware support for these operations the actual processing of the digitized signal
and (de)modulation needs to be programmed for each specific application. The phys-
ical layer of the mifare Classic card is implemented according to the ISO14443-A
standard [3]. We had to implement the ISO14443-A functionality since it was not

7 Hardware design and software is publicly available at http://cq.cx/proxmark3.pl

http://cq.cx/proxmark3.pl

Fig. 5: Experimental Setup

implemented yet. This means we had to program both processing and generation
of reader-to-tag and tag-to-reader communication in the physical layer and higher
level protocol. To meet the requirements of a replay attack we added the functions
‘hi14asnoop’ to make traces, ‘hi14areader’ to act like a reader and ‘hi14asim’ to sim-
ulate a card. We added the possibility to send ‘wrong’ parity bits. This was necessary
because we needed to be able to act like a real mifare Classic reader during encrypted
communication.

4 Communication Characteristics

To find out what the mifare Classic communication looks like we made traces of
transactions between mifare readers and cards. In this way, we gathered many traces
which gave us some insights on the high-level protocol of mifare Classic. In this
section we explain a trace we recorded as an example, which is shown in Figure 6.
This trace contains every part of a transaction. We will refer to the sequence number
(SEQ) of the messages we discuss. The messages from the reader are shown as PCD
(Proximity Coupling Device) messages and from the card as TAG messages. The time
between messages is shown in Elementary Time Units (ETU). One ETU is a quarter
of the bit period, which equals 1.18µs. The messages are represented in hexadecimal
notation. If the parity bit of a byte is incorrect, this is shown by an exclamation
mark. We will discuss only the most significant messages.

Anticollision The reader starts the SELECT procedure. The reader sends 93 20

(#3), on which the card will respond with its unique identifier (#4). The reader sends
93 70 followed by the UID and two CRC bytes (#5) to select the card.

Authentication The card is in the active state and ready to handle any higher
layer commands. In Section 2.4 we discussed the authentication protocol. Figure 3
shows the schematic of this mutual three pass authentication protocol. In Figure 6,
messages #7 to #10 correspond to authentication.
The authentication request of the reader is 60 04 d1 3d (#07). The first byte 60

stands for an authentication request with key A. For authentication with key B, the

ETU SEQ who bytes

0 : 01 : PCD 26

64 : 02 : TAG 04 00

12097 : 03 : PCD 93 20

64 : 04 : TAG 2a 69 8d 43 8d

16305 : 05 : PCD 93 70 2a 69 8d 43 8d 52 55

64 : 06 : TAG 08 b6 dd

Anticollision

16504 : 07 : PCD 60 04 d1 3d

112 : 08 : TAG 3b ae 03 2d

6952 : 09 : PCD c4! 94 a1 d2 6e! 96 86! 42
64 : 10 : TAG 84 66! 05! 9e!

Authentication

396196 : 11 : PCD a0 61! d3! e3
208 : 12 : TAG 0d

8442 : 13 : PCD 26 42 ea 1d f1! 68!
5120 : 14 : PCD 8d! ca cd ea

2816 : 15 : TAG 06!

Increment & Transfer

1349238 : 16 : PCD 2a 2b 17 97

72 : 17 : TAG 49! 09! 3b! 4e! 9e! 5e b0 06 d0!
07! 1a! 4a! b4! 5c b0! 4f c8! a4!

Read

Fig. 6: Trace of a card with default keys, recorded by the Proxmark III

first byte must be 61. The second byte indicates that the reader wants to authenticate
for block 4. Note that block 4 is part of sector 1 and therefore this is an authentication
request for sector 1. The last two bytes are CRC bytes.

Encrypted Communication After this successful authentication the card is ready
to handle commands for sector 1. The structure of the commands can be recognized
clearly. Since we control the mifare Classic reader we knew which commands were
send. Message #11 to #15 show how an increment is performed. The increment is
immediately followed by a read command (#16 and #17).

The mifare Classic commands of the higher level protocol consist of 4 bytes of
the form XX YY ZZ ZZ. The first byte XX indicates the command type. The second
byte YY indicates the memory address on which the command should be executed. A
command is not always related to a specific memory address. The halt command (50
00 57 cd) illustrates this. The last two bytes ZZ ZZ are CRC bytes.

5 Weakness in MIFARE Classic

Nohl and Plötz [5] partially recovered the algorithm that is used to encrypt the com-
munication between card and reader. Furthermore, they discovered that the pseudo-
random generator, used to generate the nonces in the authentication, is weak. Also
a dependency between the UID of the card and the key used in authentication was
revealed.

During our experiments, independently, we also discovered this weakness of the
pseudo-random generator by requesting many nonces from the card, at arbitrary
times. This experiment showed that a ‘random’ nonce repeats a few times per hour.
This is just by chance because Nohl and Plötz discovered that the nonce is generated
by an Linear Feedback Shift Register (LFSR) which shifts every 9.44µs. This is exactly
one bit period in the communication. Therefore a random nonce could theoretically
reappear after 0.618s, if the card is queried at exactly the right time.

Without knowing the cryptographic algorithm, only an online brute force attack
can be mounted, trying all possible keys in an actual authentication run between a
reader and a card. Because of the communication delay, this would take 5ms for each
attempt. An exhaustive key search would then take 16,289,061 days, which equals
about 44,627 years.
When the cryptographic algorithm is known, an off-line brute force attack can be
mounted using a few eavesdropped traces of an authentication run. Nohl and Plötz
state that with dedicated hardware of around $17.000 this would take about 1 hour.
For this attack to work, some known plaintext is required. Our analysis provides this
plaintext.

It is however possible to attack the mifare Classic in another way, that does not
require recovering the key. This attack, that we describe here, uses the weakness of
the pseudo-random generator to recover the keystream.

6 Keystream Recovery Attack

In Section 5 we discussed over a weakness in the pseudo-random generator of the
mifare Classic. In this section we deploy a method to recover the keystream that is
used in an earlier recorded transaction between a reader and a card. As a result the
keystream of the communication will be recovered. For this attack we need to be in
possession of the card. The following reasons make this attack interesting:

1. Our attack provides the known plaintext necessary to mount a brute force attack
on the key.

2. Using our attack we recovered details about the byte commands.
3. Using the recovered key stream we can read card contents without knowing the

key.
4. Using the recovered key stream we can also modify the contents of the card

without knowing the key.
5. We can spoof/clone cards.

6.1 Keystream Recovery

To recover the keystream we exploit the weakness on the pseudo-random generator.
As it is this random nonce in combination with only one valid response of the reader
that determines the continuation of the keystream. For this attack we need complete
control over the reader (Proxmark) and access to a (genuine) card. The attack consists
of the following steps:

1. Eavesdrop the communication between a reader and a card. This can be for
example be in an access control system or public transport system.

2. Make sure that the card will use the same keystream as in the recorded commu-
nication. This is possible because the card repeats the same nonce in reasonable
time, and we completely control the reader.

3. Modify the communication under the keystream, so that the card receives a com-
mand for which we expect known plaintext in the response.

4. When the plaintext is (partially) known the keystream for that part is recovered.
This will reveal data and commands that initially were encrypted.

5. Try recovering more keystream bits by shifting commands.

The plaintext P1 in the communication is XOR-ed bitwise with a keystream K

which gives the encrypted data C1. When it is possible to use the same keystream
on a different plaintext P2 and either P1 or P2 is known, then both P1 and P2 are
revealed.

P1 ⊕ K = C1

P2 ⊕ K = C2

}

C1 ⊕ C2 ⇒ P1 ⊕ P2 ⊕ K ⊕ K ⇒ P1 ⊕ P2 (1)

The weak pseudo-random generator makes it possible to replay an earlier recorded
transaction. We can flip ciphertext bits to try to modify the first command such that
it gives another result. Another result gives us another plain text. The attack is based
on this principle.

6.2 Keystream Mapping

The data is encrypted bit by bit. When the reader sends or receives a message the
keystream is shifted the size of the message sent. This is needed for the card and
reader to keep synchronized and use the same keystream bits.

The stream cipher does not use any feedback mechanism. Despite that, when we
tried to reveal contents of a message sequence using a known keystream of an earlier
trace, something went wrong. We recorded an increment followed by a transfer. We
used this trace in a replay and changed the first command to a read command which
consists of 4 command bytes and 18 response bytes. Together with the parity bits this
makes it a 198 bit stream. It was a read of known plain text and therefore recovered
198 keystream bits. But when we used this key stream and tried to map it on the
original trace of the increment (Figure 7) it turned out that the keystream was not
in phase after the first command. The reason was the short 4-bit answer of the card.

INCREMENT ACK VALUE TRANSFER ACK

Plaintext c1 04 f6 8b 0a 01 00 00 00 bb 4a b0 04 ea 62 0a

Ciphertext 4c 88 31 bc! 0a! e2 79!2a!14 35!6f! 04!81 2d!1e! 0c!

Fig. 7: Recovering the Keystream and Commands

We do not know the internal logic of the card but the following method successfully
maps the keystream on another message sequence.
Every time a data bit needs to be encrypted it is XOR-ed with the next bit in the
keystream and the keystream is shifted. The last used keystream bit is also stored
in register K. The nrbits stream is the number of keystream bits shifted since the
first command was sent. The nrbits data is the number of bits sent since the start
of the current message. If nrbits stream + 1 mod 9 = 0 (8 bits shifted in the key
stream), the keystream is shifted an extra bit and this bit is placed in our register
K. When the current message needs to encrypt a parity bit it uses the next bit from
the keystream without shifting, except when nrbits send + 1 mod 9 = 0, then it
will use the bit in register K to encrypt the parity bit.

6.3 Authentication Replay

To replay an authentication we first need a trace of a successful authentication be-
tween a genuine mifare reader and card. An example of an authentication followed
by one read command is shown below.

1 PCD 60 03 6e 49

2 TAG e0 92 93 98

3 PCD ad e7 96! 48! 20! 22 df 93

4 TAG bf 06 91! 82

5 PCD b5! 05! 47 3f

6 TAG 3f 14! 4f e9! 86 38! 96! 85 3e!

f3 e3! 3d! eb! 2b! a2 d4 dd 76!

Figure 3 shows the schematic of this trace. After this recorded authentication between
card and reader, we make sure that the memory of the card is not modified. This
ensures that when the memory of the card is read it will return the same plaintext.
Now we will act like a mifare reader and try to initiate the same authentication. In
short:

1. We recorded a trace of a successful authentication between a genuine card and
reader.

2. We send authentication requests (#1) until we get a nonce that is equal to the
one (#2) in the original trace.

3. We send the recorded response (#3) to this nonce. It consists of a valid response
to the challenge nonce and challenge from the reader.

4. We retrieve the response (#4) to the challenge from the card.
5. Now we are at the point we where we could resend the same command (#5) or

attempt to modify it.

After step 4 the card is in a state where we have successfully authenticated for (in
this case) sector 0 (block 3). Now it expects a command for this sector. If we send
the same command we recorded earlier, we get the same encrypted response as in the
original trace. Therefore the keystream is the same.

6.4 Reading a Sector

We will show that it is possible to read sector 0 from a card without knowing the
key. We only need one transaction between a genuine mifare reader and card. Every
mifare Classic card has some known memory contents. The product information
published by NXP [6] gives this information.
When a sector trailer is read the card will return logical ‘0’s instead of key A because
key A is not readable. If key B is not readable the card also returns logical ‘0’s. It
depends on the access conditions if key B is readable or not. The access conditions

Fig. 8: Recovering Sector 0

can be recovered by using the manufacturer data. Block 0 contains the UID and BCC
followed by the manufacturer data. The UID and BCC cover 5 bytes and are known.
The remaining 11 bytes are covered by the manufacturer data. Some investigation
on different cards (mifare Classic 1k and 4k) revealed that the first 5 bytes of the
manufacturer data almost never change. These bytes (MFR1) cover the positions of
the access conditions (AC) and the unkown byte U, as shown in Figure 8. This means
that the keystream can be recovered using the known MFR1 bytes by reading block
0 and block 3 (sector trailer) subsequently. Remember that the access conditions are
stored twice in 3 bytes. Once inverted and once non-inverted. This way it is easy to
detect if we indeed revealed the access conditions. The unknown byte U can be in
any state when the card leaves the manufacturer but appears to be often 00 or 69.

The access conditions tell us whether key B is readable or not. In many cases
key B is not readable. In the Netherlands the mifare Classic 4k card is used in the
public transport system. The first 5 bytes of the manufacturer data (MFR1 in Figure
8) recovered the access conditions for sector 0. Because the access conditions for the
sector trailer define key B as not readable, we know the plaintext is zeros. Hence
the whole sector trailer was revealed and therefore the contents of the whole sector 0
were revealed as well.

6.5 Proprietary Commands

We used a card in transport configuration with default keys and empty data blocks
to reveal the encrypted commands used in the high-level protocol. All the commands
send by the reader consist of a command byte, parameter byte and two CRC bytes.
We made several attempts to reveal the command by modifying the ciphertext of this
command. The way to do this is to assume we actually know the command. With
this ‘knowledge’ we XOR the ciphertext which gives us the keystream. To check if

this is indeed the correct keystream we XOR it with a new command for which we
know the response. If we guessed the initial command right the response of the card
will be that known response. This method reveiled the commands shown in Figure 9.
A logical step would now be to replay the same authentication again and try to
execute a command that will return only an ACK or NACK. Because this would
result in a shift in the keystream. There will be enough known keystream left to
construct a new ‘read sector trailer’ command. This attempt does only work if a
decrement, increment or transfer is allowed. These are the only commands that are
shorter than the read. We can only send valid commands because otherwise the
protocol aborts. Except from halt, all commands take an address byte of a block as

Fig. 9: Command set of mifare Classic

parameter (Figure 9). The read command returns 16 data bytes and 2 CRC bytes.
On a write command the card returns a 4-bit ACK. Then the card is ready to receive
16 data bytes to write and 2 CRC bytes.
The decrement, increment and restore commands all follow the same procedure. The
card response is a 4-bit ACK which means it is expecting a 4-byte value (together
with 2 CRC bytes). For the restore this value should be send but is not used. Now
the value can be send as YY YY YY YY ZZ ZZ where YY are the value bytes and ZZ

the CRC bytes.
Finally, a transfer command can be send to transfer the result of one of the previous
commands to a memory block.

Of course the card will not reply with an ACK if a command is not allowed. The
4-bit ACK is a. When a command is not allowed the card will send 4 and when a
transmission error is detected it will send 5. If the command is of the wrong length
the card does not even give a response at all. The protocol stops on every mistake or
disallowed command.

7 Conclusions & Recommendations

We have implemented a successful attack to recover the keystream of an earlier
recorded transaction between a genuine mifare Classic reader and card.

We used a mifare Classic reader in combination with a ‘blank’ card with default
keys to recover the byte commands that are used in the proprietary protocol. Knowing
the byte commands and a sufficiently long keystream allowed us to perform any
operation as if we would be in possession of the secret key.

We managed to read all memory blocks of the sector zero of the card, without
having access to the secret key. In general, we were able to read any sector of the
memory of the card, provided that we know one memory block within this sector.
Moreover, after recording a valid transaction on any sector, we were able to read the
first 6 bytes of any block in that sector and also the last 6 bytes if key B is read only.

For short term improvements we recommend not to use sector zero to store secret
information. Configure key B as readable and store random information in it. Do
not store sensible information in the first 6 bytes of any sector. Use multiple sector
authentications in one transaction to thwart attackers in an attempt to recover plain-
text. This is only helpful when value block commands are not allowed. Value block
commands are shorter than a read command and will enable a shift of the keystream.
Another possibility, that might be viable for some applications, is to employ another
encryption scheme like AES in the back office, and store only encrypted information
on the tags.

On the long term these countermeasures will not be sufficient. The mifare Classic
card has a closed design. Security by obscurity has shown several times that at some
point the details of the system will be revealed compromising security [4]. Therefore
we recommend to migrate to more advanced cards with an open design architecture.

References

1. Klaus Finkenzeller. RFID Handbook. John Wiley and Sons, 2nd edition, 2003.
2. J.-H. Hoepman, E. Hubbers, B. Jacobs, M. Oostdijk, and R. Wichers Schreur. Crossing

borders: Security and privacy issues of the european e-passport. In Hiroshi Yoshiura,
Kouichi Sakurai, Kai Rannenberg, Yuko Murayama, and Shinichi Kawamura, editors,
Advances in Information and Computer Security. International Workshop on Security
(IWSEC 2006), volume 4266 of Lecture Notes in Computer Science, pages 152–167.
Springer Verlag, 2006.

3. ISO/IEC 14443. Identification cards - Contactless integrated circuit(s) cards - Proximity
cards, 2001.

4. Auguste Kerckhoffs. La cryptographie militaire. Journal des sciences militaires, IX, 1983.
pp. 5–38, Jan. 1883, and pp. 161–191, Feb. 1883.

5. Karsten Nohl and Henryk Plötz. Mifare, little security, despite obscurity. Presentation
on the 24th Congress of the Chaos Computer Club in Berlin, December 2007.

6. NXP Semiconductors. MIFARE Standard 4kByte Card IC functional specification, Febru-
ary 2007.

	A Practical Attack on the MIFARE Classic
	Gerhard de Koning Gans, Jaap-Henk Hoepman, and Flavio D. Garcia

